Pioglitazone prevents tau oligomerization
نویسندگان
چکیده
منابع مشابه
Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization
Increased plasma homocysteinemia is considered a risk factor of dementia, including Alzheimer's disease (AD) and vascular dementia. However, the reason elevated plasma homocysteinemia increases the risk of dementia remains unknown. A pathological hallmark of AD is neurofibrillary tangles (NFTs) that consist of pathologically phosphorylated tau proteins. The effect of homocysteine (Hcy) on tau a...
متن کاملAccelerated neurodegeneration through chaperone-mediated oligomerization of tau.
Aggregation of tau protein in the brain is associated with a class of neurodegenerative diseases known as tauopathies. FK506 binding protein 51 kDa (FKBP51, encoded by FKBP5) forms a mature chaperone complex with Hsp90 that prevents tau degradation. In this study, we have shown that tau levels are reduced throughout the brains of Fkbp5-/- mice. Recombinant FKBP51 and Hsp90 synergized to block t...
متن کاملPioglitazone prevents acute and chronic cardiac allograft rejection.
BACKGROUND Peroxisome proliferator-activated receptor-gamma plays an important role in regulating inflammation. Although cardiac transplantation is an established therapy for patients with end-stage heart disease, allograft rejection is a major concern for long-term survival. We investigated the role of pioglitazone in acute and chronic rejection in a murine cardiac transplantation model. MET...
متن کاملAn inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice.
An orally bioavailable and blood-brain barrier penetrating analog of the kinase inhibitor K252a was able to prevent the typical motor deficits in the tau (P301L) transgenic mouse model (JNPL3) and markedly reduce soluble aggregated hyperphosphorylated tau. However, neurofibrillary tangle counts were not reduced in the successfully treated cohort, suggesting that the main cytotoxic effects of ta...
متن کاملTau reduction prevents Abeta-induced defects in axonal transport.
Amyloid-β (Aβ) peptides, derived from the amyloid precursor protein, and the microtubule-associated protein tau are key pathogenic factors in Alzheimer's disease (AD). How exactly they impair cognitive functions is unknown. We assessed the effects of Aβ and tau on axonal transport of mitochondria and the neurotrophin receptor TrkA, cargoes that are critical for neuronal function and survival an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical and Biophysical Research Communications
سال: 2016
ISSN: 0006-291X
DOI: 10.1016/j.bbrc.2016.08.016